Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis.
نویسندگان
چکیده
PURPOSE The objectives were to determine by nuclear magnetic resonance imaging (MRI) the target sites of ion delivery in the eye during iontophoresis, compare transscleral and transcorneal ocular iontophoresis, and monitor the distribution of a probe ion in the anterior chamber and vitreous after iontophoretic delivery. METHODS Thirty-minute 2-mA anodal constant current transscleral and transcorneal iontophoresis (current density, 10 mA/cm(2)) was performed on three New Zealand White rabbits in vivo. Intravitreal injection and passive delivery were the controls. Transscleral and transcorneal iontophoresis experiments were conducted with the electrode device placed in the superior cul-de-sac away from the limbus and on the cornea adjacent to the limbus, respectively. During iontophoresis, the current delivered into the eye was monitored using a probe ion (Mn(2+)) with MRI. The distributions of the ion in the aqueous and vitreous humor after iontophoresis, passive delivery, and intravitreal injection were also determined by MRI. RESULTS With the short application time, passive diffusion did not deliver a significant amount of the ion into the eye. Whereas transscleral iontophoresis delivered the ion into the vitreous, transcorneal iontophoresis delivered the ion into the anterior chamber. The current pathways during iontophoresis were mainly from the electrode into the eye, perpendicular to the electrode-eye interface beneath the electrode. Electric current along the surface of the globe was relatively minimal. With the present transscleral iontophoresis protocol, the ion penetrated the sclera and traveled as far as 1.5 mm from the electrode-conjunctiva interface into the vitreous. For transcorneal iontophoresis, the ion penetrated the cornea and filled the entire anterior chamber. CONCLUSIONS MRI can be a useful technique in the study of the penetration of probe compounds in the eye during and after iontophoresis, such as in iontophoresis protocol and device testing. Ocular pharmacokinetic studies using MRI are noninvasive and provide real-time data without perturbation and compound redistribution that can occur during dissection and assay in traditional pharmacokinetic studies. With MRI, it was shown that transscleral iontophoresis, transcorneal iontophoresis, and intravitreal injection deliver ions to different parts of the eye.
منابع مشابه
The modeling of induced current density in eyes from static magnetic fields produce by MR scanner
Introduction: Staff and patient Movement in static magnetic field MRI scanner induces current density in the human tissues, so cause biologic effects in people. The aim of this study was the Modelling of current density induced by moving individual with different velocities in static magnetic field of magnetic resonance imaging. Materials and Methods: current ...
متن کاملMagnetic resonance imaging of feline eye
The purpose of this study was to investigate magnetic resonance imaging (MRI) of the normal feline eyeand optic nerves using T1-weighted and T2-weighted images. A total of 6 healthy female domestic short haircats age 2-2.5 years and weighing 3.2 ± 0.4 kg were selected. Magnetic resonance imaging data werecollected using GEMSOW (Philips) at a magnetic field strength of 1.5 T. Dorsal, sagittal, a...
متن کاملANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملEnhanced Transdermal Delivery of Granisetron by Using Iontophoresis
The purpose of the present study was to explore the passive and electrically assisted transdermal transport of Granisetron hydrochloride (GRA) in solution and gel formulation through iontophoresis and also the feasibility of delivering therapeutic amounts of drug for the treatment of chemotherapy-induced nausea and vomiting. In this study, iontophoretic permeation of GRA through guinea pig...
متن کاملEnhanced Transdermal Delivery of Granisetron by Using Iontophoresis
The purpose of the present study was to explore the passive and electrically assisted transdermal transport of Granisetron hydrochloride (GRA) in solution and gel formulation through iontophoresis and also the feasibility of delivering therapeutic amounts of drug for the treatment of chemotherapy-induced nausea and vomiting. In this study, iontophoretic permeation of GRA through guinea pig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 45 4 شماره
صفحات -
تاریخ انتشار 2004